Fishtail air ko heliptar accident ma dead people ko famly ko halt

 Fishtail air ko heliptar accident ma dead people ko famly ko halt

The helicopter rotor is powered by the engine, through the transmission, to the rotating mast. The mast is a cylindrical metal shaft that extends upward from—and is driven by—the transmission. At the top of the mast is the attachment point for the rotor blades called the hub. The rotor blades are then attached to the hub, and the hub can have 10-20 times the drag of the blade.[7] Main rotor systems are classified according to how the main rotor blades are attached and move relative to the main rotor hub. There are three basic classifications: hingeless, teetering, and fully articulated, although some modern rotor systems use a combination of these classifications. A rotor is a finely tuned rotating mass, and different subtle adjustments reduce vibrations at different airspeeds.[8] The rotors are designed to operate at a fixed RPM within a narrow range of a few percent),[12][13] but a few experimental aircraft used variable speed rotors.Unlike the small diameter fans used in turbofan jet engines, the main rotor on a helicopter has a large diameter that lets it accelerate a large volume of air. This permits a lower downwash velocity for a given amount of thrust. As it is more efficient at low speeds to accelerate a large amount of air by a small degree than a small amount of air by a large degree,[15][16] a low disc loading (thrust per disc area) greatly increases the aircraft's energy efficiency, and this reduces the fuel use and permits reasonable range.[17][18] The hover efficiency ("figure of merit")[19] of a typical helicopter is around 60%.[20] The inner third length of a rotor blade contributes very little to lift due to its low airspeed.
Juan de la Cierva developed the fully articulating rotor for the autogyro. The basis of his design permitted successful helicopter development. In a fully articulated rotor system, each rotor blade is attached to the rotor hub through a series of hinges that let the blade move independently of the others. These rotor systems usually have three or more blades. The blades are allowed to flap, feather, and lead or lag independently of each other. The horizontal hinge, called the flapping hinge, allows the blade to move up and down. This movement is called flapping and is designed to compensate for dissymmetry of lift. The flapping hinge may be located at varying distances from the rotor hub, and there may be more than one hinge. The vertical hinge, called the lead-lag hinge or drag hinge, allows the blade to move back and forth. This movement is called lead-lag, dragging, or hunting. Dampers are usually used to prevent excess back and forth movement around the drag hinge. The purpose of the drag hinge and dampers is to compensate for acceleration and deceleration caused by Coriolis effect. Later models have switched from using traditional bearings to elastomeric bearings. Elastomeric bearings are naturally fail-safe and their wear is gradual and visible. The metal-to-metal contact of older bearings and the need for lubrication is eliminated in this design. The third hinge in the fully articulated system is called the feathering hinge about the feathering axis. This hinge is responsible for the change in pitch of rotor blades excited via pilot input to the Collective or Cyclic. A variation of the fully articulated system is the "soft-in-plane" rotor system. This type of rotor can be found on several aircraft produced by Bell Helicopter, such as the OH-58D Kiowa Warrior. This system is similar to the fully articulated type in that each blade has the ability to lead/lag and hunt independent of the other blades. The difference between a fully articulated system and soft-in-plane system is that the soft-in-plane system utilizes a composite yoke. This yoke is attached to the mast and runs through the blade grips between the blades and the shear bearing inside the grip. This yoke does transfer some movement of one blade to another, usually opposing blades. While this is not fully articulated, the flight characteristics are very similar and maintenance time and cost are reduced.

SHARE

About Kalevai

    Blogger Comment
    Facebook Comment

0 comments:

Post a Comment